
2024/01/10 22:23 1/9 Payment protocol PaymentsAPI v1.0.4

Wiki - https://wiki.runpay.com/

Payment protocol PaymentsAPI v1.0.4

Document change history:

Version Date Author Comment

1.0.0 02.03.2021 Menkov. V. Document creation

1.0.1 15.03.2021 Menkov. V. Added section “Certificate Conversion”

1.0.2 19.04.2021 Menkov. V. Added description of Payment/Check method

1.0.3 19.04.2021 Menkov. V. Added description of Balance method

1.0.4 15.10.2021 Menkov. V. Added Pending status

General description of the protocol

Technology: REST HTTP API.

Data format: JSON.

List of methods:

Init - payment initialization

Confirm - confirmation of payment

Authentication:

Client certificate

HMAC signature

Authentication

Client certificate

Each request must contain information about the client certificate. An example of using a client certificate in the

code of a test utility:

where clientCertPath - path to certeficate, certPass - pswd of certeficate.

Last update: 2024/01/10 10:17 public:paymentsapi_enghttps://wiki.runpay.com/doku.php?id=public:paymentsapi_eng

https://wiki.runpay.com/ Printed on 2023/01/26 22:23

Signature HMAC

If

CLIENT = Client ID,

BODY = request body (JSON),

TS = unix timestamp (UTC+0) in milliseconds (calculated each time before

request), API-SECRET = client's private key,

then the message to sign would be: MESSAGE = CLIENT + TS + BODY.

We calculate the signature as HMAC-SHA256 from MESSAGE using a private key API-SECRET and then convert the

byte array to string HEX - format:

SIGN = HEX (HMAC-SHA256(MESSAGE, API-SECRET)).

When sending a request, fill in the following HTTP headers:

RP-CLIENT = CLIENT

RP-TS = TS

RP-SIGN = SIGN

Пример:

CLIENT = N1Lin11

BODY = {

"clientTranId": "130",

"account": "282380",

"amount": 54.80,

"commissionAmount": 1.50,

"currency": "LYD",

"operatorCode": 5293

}

TS =1614696692368

 API-SECRET = 12345

then the message to be signed will be:

MESSAGE = N1Lin111614696692368

{

"clientTranId": "130",

"account": "282380",

"amount": 54.80,

"commissionAmount": 1.50,

"currency": "LYD",

"operatorCode": 5293

}

2024/01/10 22:23 3/9 Payment protocol PaymentsAPI v1.0.4

Wiki - https://wiki.runpay.com/

We calculate the signature as HMAC-SHA256 from MESSAGE using a private key API-SECRET and then convert

the byte array to string HEX - format:

SIGN = HEX (HMAC-SHA256(MESSAGE, API-SECRET)) =

108b03d50319b9422df3a121991c474fa441df41f94c62683373099d473275b0.

When sending a request, fill in the following HTTP headers:

RP-CLIENT N1Lin11

RP-TS 1614696692368

RP-SIGN 108b03d50319b9422df3a121991c474fa441df41f94c62683373099d473275b0

Sample code from test utility:

Last update: 2024/01/10 10:17 public:paymentsapi_enghttps://wiki.runpay.com/doku.php?id=public:paymentsapi_eng

https://wiki.runpay.com/ Printed on 2023/01/26 22:23

Service methods

[Payment/Init] Payment initialization method

Request type: POST.

This is the first request in a billing session. At this stage, various checks are carried out for the correctness of the

payment data and for the possibility of performing this operation.

Request example:

2024/01/10 22:23 5/9 Payment protocol PaymentsAPI v1.0.4

Wiki - https://wiki.runpay.com/

where

clientTranId - transaction number in the client's system (optional),

account - account, amount - amount to pay, commissionAmount - commission

amount, currency - currency, operatorCode - operator code,

operatorParams - incoming operator parameters (each operator has its own

parameters).

Sample response:

where

Last update: 2024/01/10 10:17 public:paymentsapi_enghttps://wiki.runpay.com/doku.php?id=public:paymentsapi_eng

https://wiki.runpay.com/ Printed on 2023/01/26 22:23

serverTranId - transaction identifier (This value then needs to be

substituted in the Confirm request), operatorParams - various operator

parameters status - transaction status (see description of statuses)

errorCode - error code (see description of error codes) errorMessage -

error description operatorParams - outgoing operator parameters

[Payment/Confirm] Payment confirmation method

Request type: POST. This method is called after successful initialization to process the payment.

Example request:

where serverTranId - transaction number (comes in response to /Init).

Sample answer:

2024/01/10 22:23 7/9 Payment protocol PaymentsAPI v1.0.4

Wiki - https://wiki.runpay.com/

[Payment/Check] Payment verification method

Request type: POST. This method is called to clarify the status of the sent payment or check if the operation

ended with an error or the connection was interrupted.

Request example:

where

clientTranId - transaction number in the client's system serverTranId -

transaction number in the RunPay system (comes in response to Init/Confirm)

It is enough to fill in one of the parameters. If both parameters are filled, then the priority serverTrandId. The

response is identical to the response to the Init/Confirm methods.

[/Balance] Payment verification method

Request type: GET. This method is used to query the user's balance.

Answer example:

Basic scenario for making a payment

Sending request /Init

From the answer we take serverTranId and substitute in the request /Confirm We send

request /Confirm

Converting the certificate

Some cases instead of pfx the certificate needs a different format such as a pem / key pair. For such purposes,

you need to use the public utility open_ssl, below are examples of the required commands:

1. Making a root certificate: openssl pkcs12 -in N4XBB.pfx -cacerts -nokeys -out ca.pem

2. Making a pem with a client certificate: openssl pkcs12 -in N4XBB.pfx -clcerts -nokeys -out cert.pem

3. Making a pem with a private key: openssl pkcs12 -in N4XBB.pfx -nocerts -out key.pem

Last update: 2024/01/10 10:17 public:paymentsapi_enghttps://wiki.runpay.com/doku.php?id=public:paymentsapi_eng

https://wiki.runpay.com/ Printed on 2023/01/26 22:23

Test utility

The TestClient utility has been created to test the API. You can use it to send with a signature.

1. API base address

2. Method

3. Client code (issued upon registration)

4. Client password (issued during registration)

5. Client certificate (issued upon registration)

6. Password from the certificate (issued during registration)

7. Request body

8. The generated timestamp value

9. The generated signature value

10. Query result

11. Lead time

12. Send request button

2024/01/10 22:23 9/9 Payment protocol PaymentsAPI v1.0.4

Wiki - https://wiki.runpay.com/

13. Response body

List of transaction statuses

InitFail - payment initialization error

InitPorcess - transaction validation is in progress

InitSuccess - successful initialization of the payment

PayFail - payment confirmation error

PayProcess - the payment is being processed

PaySuccess - payment completed successfully

PayPending - deferred payment processing

List of error codes

0 No error

1 Incorrect query parameters

2 Request log not found

3 No active store or active business found

4 Repeat Request ID

5
No matching validation request found. Perhaps the wrong status of the transaction, ie. repeat command

6 Subagent point code is not registered in the database

7 Certificate expired according to DB

8 Phone number/account length is too long

9 No gateway found for online command

10 Operator blocked or subagent banned

11 Transaction date too old

12 Error adding payment to the queue

14 Certificate verification error

15 Invalid optional parameter format or missing required parameter

100 Data not found

101 Internal Server Error

34 Prohibited payment currency

114 Exceeding the limit for the period

https://wiki.runpay.com/
https://wiki.runpay.com/doku.php?id=public:paymentsapi_eng

